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Periodic oscillations are found in a one-dimensional model of thermal convection. 
The model consists of a fluid-filled tube bent into rectangular shape and standing 
in a vertical plane. The fluid is heated a t  the centre of the lower horizontal 
segment and cooled at the centre of the upper horizontal segment. When a 
certain parameter exceeds unity, a periodic motion of the fluid is found in which 
the flow is always in the same direction but in which the speed varies. Inertia 
is unimportant for this oscillation, which depends upon the interplay between 
frictional and buoyancy forces. 

1. Introduction 
To study thermal convection, Welander (1965) proposed a simple one-dimen- 

sional model consisting of a fluid-filled tube bent into rectangular shape and 
standing in a vertical plane. The fluid is heated at  the centre of the lower hori- 
zontal segment and cooled at the centre of the upper horizontal segment. In  
experimenting with this model, he found that the fluid performed a few oscil- 
lations before settling down to steady convection. It is our purpose to study 
these oscillations. 

Our main result is that, under suitable conditions, the model exhibits periodic 
motions. It is a self-excited oscillator. In  these periodic motions the fluid always 
moves in the same direction and its speed varies periodically. Furthermore, 
the oscillations can occur in the absence of inertial effects, merely requiring 
an interplay between frictional and buoyancy forces. These facts will be demon- 
strated by finding an exact explicit solution of the non-linear equations governing 
the motion of the fluid in the model. The existence of similar oscillations in 
BBnard cells is suggested by T.Rossby’s motion pictures of such cells at high 
Rayleigh number. 

The present model has a state of rest, a state of steady convection provided 
a certain parameter is less than one, and a periodic motion if that parameter 
exceeds one. The fact that there is no steady state in the latter case is a defect 
of our simplified (discontinuous) characterization of the heating and cooling 
elements. For a more realistic (continuous) characterization we show that there 
is always a steady state. We also show that this steady state is unstable 
under certain conditions. Then presumably periodic motions will occur for the 
continuous model, just as for our discontinuous one. 

t Part of this work was done while the author was a member of the Geophysical Fluid- 
dynamics Project, Woods Hole Oceanographic Institute, Woods Hole, Mass. 
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Welander (1965) has made a detailed study of the stability of the steady state 
for a particular continuous model. For that model he has also solved the initial- 
value problem numerically. It appears that oscillations occur when the steady 
state is unstable, as we should expect. 

2. Formulation 
Let us consider two vertical pipes of equal length joined together at the top 

and bottom by two horizontal pipes (see figure 1). We assume that there is a 
heating element at the mid-point of the lower pipe and a cooling element at  
the mid-point of the upper pipe. The pipes are supposed to contain a fluid with 
volume coefficient of thermal expansion a. Thus the density p of the fluid at 

FIGURE 1. A tube bent into rectangular form. Arc length s is measured counter-clockwise 
from the heating element a t  the mid-point of the lower horizontal segment. The corners 
are a t  sl, s2 z L-s,, s, = L+s, and s, = 2L-s,. The cooling element is a t  s = L. 

temperature T is assumed to be p = po( 1 + aT). As a consequence of temperature 
variations in the fluid there will be density variations. They may result in a net 
buoyancy force on the fluid due to gravity. Such a buoyancy force will produce 
a motion of the fluid, which we wish to investigate. 

In  order to describe the temperature distribution we introduce the arc length 
s measured counter clockwise along the pipes from the heating element. Let the 
corners be a t  s,, s2 = L-s,, s3 = L+s, and sp = 2L-s,, the cooling element 
a t  s = L and the heating element a t  s = 0, which is the same as s = 2L. We 
denote the temperature a t  position s and time t by T(s,  t )  and the counter clock- 
wise velocity of the fluid, assumed to be the same at all points of the fluid, by 
u(t). If A denotes the constant cross-sectional area of the pipes and - pu denotes 
the frictional force on the fluid, the equation of motion for the fluid is 

2LApout+pu = apoAg [ ~ ~ ~ T ( s , t ) d s - ~ ~ ~ T ( s , t ) d s ~ .  

To determine the temperature we assume that thermal conduction is negligible 
compared with thermal convection. Therefore T satisfies the equation 

Tt+uT, = 0. (2.2) 
We also assume that the heating and cooling elements are characterized by 
relations which determine the temperature of the fluid coming out of an element 
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in terms of the temperature of the fluid entering that element. These relations will 
involve the velocity of the fluid. We take them to be 

T(O & t )  = [Th-T(O T 7 t)]f(U/uo), (2.3) 

T(L+ , t )= T,-[T,-T(LT , t ) ] f (~ /uo) .  (2.4) 

In  these relations + denotes the sign of u so that T on the left side of each 
equation denotes the temperature of the fluid coming out of the heating or cooling 
element, while T on the right side denotes the temperature of the fluid entering 
the corresponding element. The temperatures Th and T, are supposed to be the 
temperatures of the fluid leaving the elements when lul is small compared with 
the characteristic velocity uo. On the other hand, when IuI is large compared with 
uo, the temperature of the fluid should be unchanged by the elements. Therefore 
the functionf(u/uo) must increase monotonically from zero to unity as lul/uo in- 
creases from zero to infinity. In  addition it must be an even function of u. 

The problem we consider is that of solving equations (2.1) -(2.4) for u(t) and 
T(s,  t ) .  In  the initial-value problem we assume that u(0) and T(s, 0) are given, 
while in the oscillation problem we seek periodic solutions. The function f(u/uo) 
must also be given. 

3. New variables 
It is convenient to introduce the dimensionless variables s', t ' ,  u' and T',  

s' = s/L,  t' = tuo/L, u' = u/uo, defined by 

T'(s', t') = [T(s, t )  - +(Th + T,)]/+(T'- T,). 
In  terms of these variables (2.1)-(2.4) become the following equations, from which 
all primes have been omitted, 

Now s ranges from 0 to 2 and the cooling element is at s = 1. 

antisymmetric form 

For such distributions we see that (3.5) is an immediate consequence of (3.4) and 
that (3.2) reduces to 

We shall restrict our attention to temperature distributions which are of the 

(3.8) T(s,t) = -T(l+s,t). 

put + yu = T(s,  t )  ds. (3.9) Is: 
Thus we need merely determine u(t) and T(s,t) for 0 < s < 1 satisfying (3.3), 
(3.4) and (3.9). In (3.4) T(0-,t)  occurs, but by (3.8) T(0- , t )  = -T( l - , t ) .  
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To solve (3.3) let us introduce x, defined by 

r t  
(3.10) 

Then the solution of (3) may be written as 

T(s , t )  = T ( x - s )  (0 < s 6 1). (3.11) 

If we consider u to be a function of x then ut = uu, and (3.9) becomes 

(3.12) 

By using (3.11) we can write (3.4) as 

T ( x )  = 1 - [T(x-  1) + l]f(u) 

T ( x  - 1) = - 1 + [I - T ( x ) ] f ( u )  

(u > O ) ,  (3.13) 

(3.14) 

Thus the problem is reduced to solving (3.12)-(3.14) for u(x)  and T(x) .  In  the 
initial-value problem we must be given u(0) and T ( x )  for - 1 < x < 0. For a solu- 
tion in which U ( X )  > 0, we need solve only (3.13) and (3.13). 

(u < 0). 

4. Steady-state solution 
Let us first seek a steady or time-independent solution with u =t= 0. If Tt = 0 

then it follows from (3.3) that T, = 0 so T is a constant in the interval 0 < s < 1. 
Then (3.9) becomes 

u = T(s2 - 81) y-l. (4.1) 

From (3.4) we obtain two equations, one for u > 0 and one for u < 0. They are 

Eliminating u between (4.1) and (4.2) yields 

(1  - T)/( 1 + T) = f [ T ( s ,  - 81) y-11. (4.4) 

The left side of (4.4) decreases monotonically from +m at T = - 1 to zero at  
T = + 1. The right side is positive, and monotonically increasing from zero to 
one as T increases from 0 to m. Therefore (4) has exactly one solution Tl > 0, 
provided f is continuous. The corresponding velocity u1 = Tl(s2 - sl)  y-l given 
by (4.1) is also positive. Equations (4.1) and (4.3) become identical with (4.1) 
and (4.2) when u and T are replaced by - u and - T. Therefore - Tlis the unique 
solution of (4.1) and (4.3) and the corresponding velocity -ul is negative. 

If u = 0 then (3.3) does not imply that T is independent of s in a steady state. 
In addition (3.4) does not apply. Then (3.9) yields the sole equilibrium condition 

There are obviously infinitely many equilibrium distributions satisfying (4.5). 
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5. Periodic solution for an inertialess system 
We shall now obtain a periodic solution of (3.12)-(3.14) by setting p = 0,  

which means omitting inertial effects. In  addition we shall choose for f (a) the 

To construct the solution we consider the initial-value problem with T ( z )  given 

T ( x )  = 1 ( -  1 < x 6 0). (5.2) by 

When /3 = 0 it  is not necessary to specify u(0). We shall show that the solution 
of (3.12)-(3.14) with p = 0 ,  f given by (5.1) and T given initially by (5.2) is 
periodic. The solution can be found by drawing a picture of the cell and following 
the motion of the hot and cold fluid, however, we shall give an analytic deriva- 
tion. 

When ,8 = 0, (3.12) becomes 
2-s1 

(5.3) 

Withfgiven by (5.1), (3.13) becomes 

T ( x )  = 1 (0 < u(x)  < 1)) 

T(x)  = - T ( x  - 1) (1 < u(x) ) .  

We shall not need (3.14) since u will always be positive. From (5.2) and (5.3) we 
obtain 

u(2) = u, (0 < x < sl), (5.6) 

where u1 is defined by u1 = y-1(s2-s1). (5.7) 

y < 1-28, (5.8) 

We shall assume that u1 > 1, which implies that 

From (5.6) and our assumption (5.8) it follows that u(x) > 1 for 0 < x < sl. 
Let x2 be the smallest positive value of x for which u(x) = 1. Then (5.5) yields 

T ( x )  = - 1 (0 < x < x 2 ) .  (5.9) 

Now (5.9) and (5.2) can be used in (5.3) to yield 

u(x)  = u, - 2y-yx - sl) (sl 6 x < x2 + sl). (5.10) 

To find x2 we set u(x2) = 1 in (5.10) and obtain 

x2 = *(1-y). (5.11) 

Let x3 be the smallest value of x > x2 for which u(x) = 1. Then from (5.4) we 

T(x)  = 1 (xg < x < x3). (5.12) have 

Now (5.12) can be used in (5.3), together with (5.9) and (5.2), to yield 

u(x)  = 1 - 2y-b, 

u(x)  = 1 +2y-l(x- 1)  

(x2 + s1 < x < s2) ,  

(s2 < x < x3). 
(5.13) 

(5.14) 
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To find xg we set u(x& = 1 in (5.14) and obtain 

x3 = 1. 

We now use (5.9) in (5 .5)  to obtain 

(5.15) 

T ( x )  = 1 (1 < x < l+x,). (5.16) 

By using (5.16) and (5.12) in (5.3) we find that (5.14) holds for 

x2 < x < l+i(s,-s,-y) 

and u(x)  = u1 (1+g(s2-s, -y) < x < 1+x2). (5.17) 

Since u(x) > 1 for 1 < z < 1 +x2, our use of (5.9) in deriving (5.16) is justified. 
The fact that by (5.12) and (5.16) T ( z )  = 1 in the interval xz < x < 1 +x, shows 
that T ( x )  is periodic with period 1 + x2. 

In the above analysis we must require that u(x)  be positive in order that the 
introduction of x as a new variable be valid. Therefore the minimum velocity 
(5.13) must be positive, which implies 

y > 28,. (5.18) 

This restriction and (5.8) yield 28, < y < 1 - 2sl, which implies that 8, < $. 

ax/& = u(x)  with the initial condition x(0) = 0 to obtain 
To reintroduce the time t instead of the distance x we solve the equation 

ax t=lom* 
By using the preceding results for u(x)  in (5.19) we obtain 

(5.19) 

z = u,t (0 < t < sl/ul), (5.20) 

(5.21) 
1 - 28, 

(5.22) 

Here t‘ is defined by 
s y 1-28, l+y-4s1 

t‘ = L + - logp ~- 

u1 2 y-2~,+2-4y-~8,’  
(5.23) 

x =  1-- ?iY + (BY - 8,) exp (2y-Yt - t’)], t‘ < t < t‘ + 47 log [( 1 - 2s,)/(y - 28,)], 
(5.24) 

x = *( 3 - y) - 8, + u,(t - t’) - i y  log [( 1 - 2s,)/(y - ZS,)], 

1 - 28, 1-28, 8 

Y - 281 7-28, u1 
t’ + i y  log ~ < t < t’+*ylog--- +A.  (5 .25)  

The upper limit in (5 .25)  is the period P of the motion. From (5.23) and (5.25) 
it  is 

(5.26) 

Graphs of T(x)  and u(x)  are shown in figure 2. 
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6. Stability of the steady motion 
The discontinuous function f(u) employed in the preceding section is such that 

with it the cell has no steady motion, provided (5.8) is satisfied. In  $4 we showed 
that there is always one pair of steady motions when f(u) is continuous. This 
might suggest that the periodic motion we have just found occurs because we 
chose a discontinuous f. We shall now show that this is not the case by proving 

- I t  - - - - 
FIGURE 2. Graphs of u (solid curve) and T (broken curve) as functions of x for one period 
of the periodic solution found in $5. For this graph s1 = $, y = 3, u1 = Q, xz = 2, the 
period is 13 and the minimum velocity is +. 

that, if we make f continuous by introducing a steep linear section, the resulting 
steady solution is unstable. This result shows that, if there is a stable solution for 
such an f, i t  is not steady. Our previous solution suggests that it is periodic. 

Letf(u) = Ofor lul < 1, f(u) = 1for IuI 2 1+6and 

f(u) = F ( U - 1 )  (1 6 u < l+S) .  (6.1) 

Then for 0 < 6 < 1, the solution us, T, of the steady-motion equation (4.4) is 

The variational 
equations with 

us= 1+6[(u,-l)/(u,+1)]+0(62), T,= us/ul. (6.2) 

equations of (3.12) and (3.13), obtained by differentiating these 
respect to some unspecified parameter, are at u = us, T = T,, 

x-x, 
j3ustiz+yi = [ Tax,  

J z-sp 

P(x)  = - T ( x  - l)f(us) - f '(us) (T, + 1) ti. 

Here T and ti denote the variations of T and u, i.e. their derivatives with respect 
to a parameter. 

We shall seek a solution of (6.3) and (6.4) of the form 

6 = Ueiux 

T = Veiux. 

Using (6.5) and (6.6) in (6.3) and (6.4) yields 
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Eliminating V /  U yields 

i w ( i w p u ,  + y )  [l +f(u,)  e - i w ]  +f’(us) (T, + 1) ( e - i w s i  - e - i w s z )  = 0. (6.9) 

Inserting the values of us and T, yields 

From (6.10) we see that w is a function of 6, w ( 6 ) .  For 6 = 0, (6.10) yields 

e-idO)s, - e-iw(0) sz = 0. (6.11) 

Thus, since s2 - s, = 1 - 28, the solution of (6.11) may be written as 

2nn 
w ( 0 )  = ~ (n = 0, rt 1, * 2  ,... ). 

1 - 28, 
(6.12) 

Differentiating (6.10) with respect to 6 at 6 = 0 yields 

( - iw‘sl e - i w s l +  iw’s 

Solving for w‘ leads to 

(6.14) 

NOW ~ ( 6 )  = ~ ( 0 )  + Sd(0)  + O(6’). Thus 

Im w(6) = 6Im w ’ ( 0 )  + O ( P )  

ul- 1 
1 - 2s, u,+ 1 

= 5 [wysinws,+- sin w( 1 + sl) - d p  

+ O ( P ) .  (6.15) 

On the right side in (6.15), w denotes w(O) ,  which is given by (6.12). It is clear 
that for any choice of the parameters y, s, and p (provided s, and p are not both 
zero) there are values of n in (6.12) for which the right side of (6.15) is negative. 
Therefore the steady state is unstable when 6 is sufficiently small. This confirms 
the assertion in the first paragraph of this section. 

Support for this project was given by the U.S. Army Research Office, Durham, 
under contract no. DA-3 1- 124-ARO-D-361. 

REFERENCE 

WELANDER, I?. 1965 Steady and oscillatory motions of a differentially heated fluid loop, 
Woods Hole Oceanographic Institute. Ref. no. 65-48 (unpublished manuscript). 


